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Abstract

We consider matrix materials reinforced with multiple phases of coated inclusions. All materials are linear viscoelas-
tic. We present general schemes for the prediction of the effective properties based on mean-field homogenization. There
are four contributions in this work. First, we present a two-step homogenization procedure in a general setting which
besides the usual assumptions of Eshelby-based models, does not suffer any restriction in terms of material properties,
aspect ratio or orientation. Second, for a matrix reinforced with coated inclusions, we propose two general homogeni-
zation schemes, a two-step method and a two-level recursive scheme. We develop and compare the mathematical
expressions obtained by the two schemes and a generalized Mori–Tanaka (M–T) model. Third, for a two-phase com-
posite, either standalone or stemming from two-step or two-level schemes, we use a double-inclusion model based on a
closed-form but non-trivial interpolation between M–T and inverse M–T estimates. Fourth, we conduct an extensive
validation of the proposed schemes as well as others against experimental data and unit cell finite element simulations
for a variety of viscoelastic composite materials. Under severe conditions, the proposed schemes perform much better
than other existing homogenization methods.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Homogenization; Viscoelasticity; Composites; Coatings; Multi-phase
1. Introduction

Pioneering contributions to the homogenization of linear viscoelastic composites were made by Hashin
(1965, 1970) and Christensen (1969). In 1965, Hashin predicted the effective bulk modulus of two-phase
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viscoelastic composites. Christensen followed in 1969 with formulae for both bulk and shear complex
moduli. Hashin also gave results for the shear modulus in 1970. All these models are based on the compos-
ite spheres assemblage developed by Hashin (1962) for elastic composites and make use of the well-known
correspondence principle between linear elasticity and linear viscoelasticity. The major restriction in those
models is that they consider macroscopically homogeneous composites, therefore they cannot handle
fibrous composites for instance. Afterwards, the correspondence principle has been heavily used in order
to extend any homogenization model valid in linear elasticity to linear viscoelasticity. Recently, Chandra
et al. (2002) made a comparative study between various models, simple ones such as Halpin-Tsai, Tsai
or Saravanos-Chamis or more elaborated ones like the Zao–Weng model (a modified Eshelby-based
Mori–Tanaka). Predictions were compared to finite element (FE) calculations for long fiber reinforced
composites.

All the above-mentioned models are for two-phase composites. Our proposal in this paper is to use a
viscoelastic extension of an interpolative double-inclusion (D–I) mean-field homogenization model. In
linear elasticity, the model was proposed by Lielens (1999) based on the Nemat-Nasser and Hori (1999)
family of D–I models. It can be seen as a closed-form but non-trivial interpolation between the Mori–
Tanaka (M–T) and inverse M–T estimates. The model works remarkably well from small to large values
of inclusions� volume fractions and from low to high contrast values.

For multi-phase viscoelastic composites, Fisher and Brinson (2001) used a direct extension of M–T to
three-phase composites. This extension suffers from some restrictions as Benveniste et al. (1989) demon-
strated that in linear elasticity diagonal symmetry of the effective stiffness tensor is not always guaranteed
when M–T is used for a multi-phase composite. In this paper, we propose a viscoelastic extension of a gen-
eral two-step homogenization procedure used in linear elasticity by Camacho et al. (1990), Lielens (1999)
and Pierard et al. (2004), and also extended to elastoplasticity by Doghri and Tinel (2005). The procedure is
very generic, and besides the usual limitations of Eshelby-based models, does not suffer any restrictions in
terms of material properties, number of phases, inclusions� shapes or orientations. The first step consists in
the homogenization of two-phase pseudo-grains, and any suitable model (such as M–T) can be used in this
step; we suggest using interpolative D–I. In the second step, homogenization of all pseudo grains is carried
out with models leading to physically acceptable predictions (e.g., symmetric effective stiffness). We suggest
using a simple Voigt model in this second step.

For viscoelastic composites, it is often assumed that energy losses occur at inclusions� boundary. This
behavior can be studied by including an interphase between each inclusion and the matrix, resulting in
coated inclusions composites. A first modeling approach is through finite element (FE) analysis, (e.g. Marra
et al., 1999). A second approach is through the development of analytical or semi-analytical solutions in
linear (thermo)-elasticity for special cases, mainly for a matrix reinforced with single or dilute concentra-
tions of coated spheres or long cylinders. The composite-spheres assemblage of Hashin (1962) and the
three-phase model by Christensen and Lo (1979) are at the origin of the n-layered spherical inclusion model
by Herve and Zaoui (1993). The latter model treats coated particle-reinforced materials by considering a
spherical particle surrounded by a layer of coating, itself surrounded by a layer of matrix, and the ensemble
is embedded inside a medium whose elastic parameters are the overall (unknown) ones. Analytical formulae
can be found for the bulk and shear moduli of these composites. The model was recently used by Chabert
et al. (2004). The interphase parameters were always chosen to fit experimental data. For a single coated
long cylinder embedded in a matrix body, Benveniste et al. (1989) computed stress and strain fields under
axisymmetric and non-axisymmetric boundary conditions in linear thermo-elasticity.

A third modeling strategy in coated composites is mean-field homogenization. Several authors postulate
that the composite�s behavior is the same as if the interphase were a separate inclusion phase and use a di-
rect extension of M–T to predict the overall properties. In linear thermo-elasticity, Benveniste et al. (1989)
proposed a modified direct M–T model. They considered coatings as a separate phase but computed the
strain concentration tensors not from M–T, but by solving in closed-form the problem of a single coated
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long fiber, embedded in a matrix. Fisher and Brinson (2001) extended the Benveniste et al. (1989) scheme to
viscoelastic coated composites and confronted the predictions to FE results. The predictions were not better
than those obtained by a classical direct M–T extension treating the coatings as a separate phase. For
coated spherical inclusions, Sarvestani (2003) uses M–T but accounts in a phase-averaging sense of the
interaction between two coated particles. Cherkaoui et al. (1996) used a method similar to that of Benven-
iste et al. (1989) but developed a self-consistent (SC) scheme instead of M–T and proposed expressions of
strain concentration tensors based on a thin layer asymptotic theory. The multi-inclusion model of Nemat-
Nasser and Hori (1999) or its simpler double-inclusion version lead to the same overall stiffness predictions
as a generalized M–T model. Recently, Aboutajeddine and Neale (2005) reformulated the Nemat-Nasser
and Hori (1999) double-inclusion model.

For composites with coated inclusions, we are interested in methods which would work in a general set-
ting and are not restricted to special shapes or loading conditions. Also, we would like to extend them to
viscoelasticity, test them in severe conditions (e.g., high contrasts between material properties and high vol-
ume fraction of inclusions) and obtain good predictions for both storage and loss moduli. We propose two
general mean-field homogenization strategies, a two-step procedure and a two-level recursive scheme. The
two-step procedure treats coatings as a separate phase but instead of using a direct M–T extension, we vir-
tually decompose the composite into two pseudo-grains (each containing a reinforced matrix) and homog-
enize it in two steps. We suggest interpolative D–I or M–T in the first step and Voigt in the second. In the
two-level scheme, we first homogenize the coated inclusions (deepest level) and then the matrix reinforced
with homogenized inclusions (highest level). We suggest using interpolative D–I or M–T at each level, and
particularly the former at the deepest level.

The paper has the following outline. Viscoelasticity of homogeneous materials is presented in Section 2.
In Section 3, the correspondence between linear elasticity and linear viscoelasticity is used to extend a
two-step homogenization procedure to general multi-phase viscoelastic composites. Section 4 deals with
general methodologies for the homogenization of coated composites. It discusses our proposed two-step
and two-level schemes and compares their mathematical expressions to those of a direct M–T method. Sec-
tion 5 explains the numerical Laplace–Carson inversion which is carried out in order to bring solutions
back to the time domain. An extensive validation effort is carried out in Section 6 for numerous viscoelastic
composite systems. The predictions of our proposed methods as well as those of other authors are
compared against experimental data and unit cell finite element simulations. Conclusions are drawn in
Section 7.
2. Response of a homogeneous material to harmonic loading

We briefly recall the mechanical response of linear viscoelastic materials to harmonic oscillations. A one-
dimensional example is given to illustrate that the complex moduli—which completely characterize the
material subjected to this kind of loadings—can be viewed as the LCT of the time moduli. Afterwards,
the tensorial formalism will help us to stay as generic as possible in the developement of homogenization
schemes of Section 3.

2.1. Complex modulus as the LCT of the time modulus

Consider a homogeneous viscoelastic specimen subjected to a uniaxial complex strain history e(t) = e0eixt

with amplitude e0 small enough for the material to remain in the linear regime. The corresponding stress
response, detailed in Wineman and Rajagopal (2000), is given by
rðtÞ ¼ E�ðxÞeðtÞ; ð1Þ
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where E *(x) = E 0(x) + iE00(x) is the complex modulus in tension. Its real and imaginary parts (storage and
loss moduli resp.) are related to the recoverable and dissipated strain energy during the cycles, resp. Their

ratio tan dðxÞ ¼ E00ðxÞ
E0ðxÞ is then interpreted as a measure of the damping capacity of the material and is called

the loss factor.
Moreover, if we define the LCT f̂ ðsÞ of a function f(t) by s times its Laplace transform,
f̂ ðsÞ ¼Lc½f ðtÞ�ðsÞ ¼ sL½f ðtÞ�ðsÞ ¼ s
Z 1

0

f ðtÞe�st dt; ð2Þ
the complex modulus in tension appears to be the LCT of the corresponding time modulus for a particular
value of the variable s:
E�ðxÞ ¼Lc½EðtÞ�ðsÞjs¼ix. ð3Þ
2.2. The 3D tensorial formalism

The three dimensional constitutive equation for a homogeneous linear viscoelastic material is often writ-
ten under the integral relaxation form
rðtÞ ¼ GðtÞ : eð0Þ þ
Z t

0

Gðt � sÞ : _eðsÞds with eð0Þ ¼ lim
t!0
t>0

eðtÞ; ð4Þ
where r(t), e(t) and _eðtÞ are the second-order stress, strain and strain rate tensors, respectively and G(t) is the
fourth-order relaxation tensor. This standard solid model can in most cases be inverted into an equivalent
integral creep form. The fourth-order creep tensor J relates the strain to the stress history. In the Laplace–
Carson domain (see hereafter) this is reflected by Ĵ ¼ Ĝ

�1
. For an isotropic material, the relaxation tensor

has the following expression:
GðtÞ ¼ 2GðtÞI þ KðtÞ � 2

3
GðtÞ

� �
1� 1; ð5Þ
where I and 1 are the symmetric fourth- and second-order identity tensors, respectively, and K(t) and G(t)
the bulk and shear moduli.

If e(t) is a continuous and piece-wise differentiable function of time, the linear viscoelastic stress–strain
relation (4) can be transformed by applying LCT (2) on both of its sides, leaving us after some simple
manipulations with:
r̂ðsÞ ¼ ĜðsÞ : êðsÞ; i:e: r̂ijðsÞ ¼ ĜijnmðsÞêmnðsÞ. ð6Þ

Each component ĜijklðsÞ of the fourth-order tensor ĜðsÞ is the LCT of Gijkl (t). It is a complex function of
the complex variable s. As already illustrated in Section 2.1, taking the ĜijklðsÞ for s = ix provides us with a
means to completely characterize the frequency response of the material. Examples in connection with the
numerical simulations of Section 6 are given hereafter. For isotropic materials, the complex tensile modulus
is computed with help of the fourth-order creep tensor in the complex plane:
E�ðxÞ ¼ 1

Ĵ 1111ðixÞ
. ð7Þ
For transversely isotropic materials with anisotropy axis along the third direction, the complex transverse
plane strain tensile modulus is given by
E�12;2ðxÞ ¼ Ĝ1111ðixÞ �
Ĝ1122ðixÞĜ2211ðixÞ

Ĝ2222ðixÞ
. ð8Þ
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3. Homogenization of multi-phase linear viscoelastic composites

Taking advantage of the correspondence principle, the prediction of the frequency behavior of hetero-
geneous viscoelastic solids is not more difficult than the prediction of the overall mechanical properties of
multi-phase elastic composites. The problem is brought from time to complex domain where a two-step
homogenization procedure is performed. In order to obtain storage and loss moduli characterizing the re-
sponse of the material just a change of variable is needed as shown in Section 2.2.

3.1. Full analogy with linear elasticity

Let the representative volume element (RVE) X of a multi-phase composite be a matrix with N families
of spheroidal inclusions. Each family Xi with volume fraction vi inside the RVE is characterized by an
aspect ratio Ari and a relaxation tensor Gi(t). Let also wi(p) be the orientation distribution function describ-
ing the orientation of the inclusions belonging to family i. The matrix X0 has concentration v0 and a
relaxation tensor G0(t). The term phase will be used to denote a family (phase i for 1 6 i 6 N) or the
matrix (phase 0). Each phase�s material is linear viscoelastic and homogeneous with a constitutive law given
by (4).

Let the RVE be subjected to linear boundary displacement u(x, t) and apply the LCT (2) on the time
variable t for all involved equations (i.e. constitutive equations, boundary conditions, . . .). What we get
is a fictitious RVE in the Laplace–Carson domain (variable s) with boundary conditions ûðx; sÞ and for
which the material behavior of each phase 1 6 i 6 N is given by
r̂ðx; sÞ ¼ Ĝ iðsÞ : êðx; sÞ; 8x 2 Xi. ð9Þ
This situation is identical to that of a multi-phase composite with homogeneous linear elastic reinforce-
ments (see Camacho et al., 1990; Lielens, 1999; Pierard et al., 2004). Any homogenization procedure valid
for these latter materials can thus be extended and applied to predict the frequency behavior of multi-phase
viscoelastic composites.

3.2. A general two-step homogenization procedure

A general two-step homogenization procedure proposed in linear elasticity is applied here on the mod-
ified problem—the LCT of the original one—by keeping in mind that we are working with the complex
variable s. The starting point of the method is the decomposition of the RVE into a set of pseudo-grains
(see Fig. 1). Each pseudo-grain Xi,p is a two-phase composite containing the matrix material and all the
inclusions of family (i) aligned in direction p. The relative volume fraction of the reinforcements in a pseu-
do-grain is set to (1 � v0). The idea is the following. As illustrated on Fig. 1, each pseudo-grain is first
homogenized individually with a suitable scheme for this kind of composite. Afterwards the set of homo-
geneous pseudo-grains is itself homogenized. At the end, a volume average over the entire RVE is obtained
as an average over families and orientations of the volume averages over the pseudo-grains:
h�iX ¼
XN

i¼1

vi

ð1� v0Þ

I
h�iXi;p

dwiðpÞ ¼
: h�iXi;p

D E
i;Wi

. ð10Þ
The derivation of the above formula is done as follows:
h�iX ¼
1

V ðXÞ
XN

i¼1

V [
p
Xi;p

� �
h�i[

p
Xi;p
¼
XN

i¼1

I
h�iXi;p

dV ðXi;pÞ
V ðXÞ ; ð11Þ



DECOMPOSITION

FIRST STEP SECOND STEP

Fig. 1. The two-step homogenization procedure. The composite is decomposed into pseudo-grains. Step 1: homogenization of each
pseudo-grain. Step 2: homogenization of the set of homogenized pseudo-grains.
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with
dV ðXi;pÞ
V ðXÞ ¼

vi

ð1� v0Þ
dwiðpÞ; ð12Þ
expressing the volume conservation of the inclusions of a given family aligned in a given direction inside the
corresponding pseudo-grain and inside the entire RVE.

3.2.1. Homogenization of each pseudo-grain
Let X1

i;p and X0
i;p, respectively be the inclusion and matrix phases of the pseudo-grain Xi,p and B̂e

i;pðsÞ the
related strain concentration tensor, i.e.
hêðx; sÞiX1
i;p
¼ B̂e

i;pðsÞ : ĥeðx; sÞiX0
i;p

. ð13Þ
Once defined, a strain concentration tensor gives rise to an effective relaxation tensor
Ĝ i;pðsÞ ¼ ð1� v0ÞĜ iðsÞ : B̂e
i;pðsÞ þ v0Ĝ0ðsÞ

h i
: ð1� v0ÞB̂e

i;pðsÞ þ v0I
h i�1

ð14Þ
that links average stress and strain at pseudo-grain level
hr̂ðx; sÞiXi;p
¼ Ĝ i;pðsÞ : hêðx; sÞiXi;p

. ð15Þ
Simple homogenization schemes are obtained by assuming the same strain (Voigt) or stress (Reuss) in both
phases of the pseudo-grain. These assumptions respectively lead to overestimate and underestimate the
overall stiffness of this two-phase composite. In addition neither the shape of the inclusions nor their ori-
entation are taken into account. More elaborated methods make up for these shortcomings and base their
foundations on Eshelby�s result (Eshelby, 1961). The latter is still valid here because the only difference with
the linear elastic case is that every quantity depends now on the complex variable s.

The M–T model was proposed by Mori and Tanaka (1973) and takes into account, in an average way,
the interactions between the inclusions. The strain concentration tensor for the M–T scheme is
B̂e
i;pðsÞ ¼ I þ SI;Ĝ0ðsÞ : Ĝ

�1

0 ðsÞ : Ĝ iðsÞ � I
� �� ��1

¼: BMTðsÞ; ð16Þ
where SI;Ĝ0ðsÞ is Eshelby�s tensor with I corresponding to the inclusions with aspect ratio Ari aligned in direc-
tion p. This expression is found to be identical to the one of the single inclusion problem (an inclusion
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isolated inside an infinite matrix submited to a uniform remote strain field). Consequently, Benveniste
(1987) proposed the following interpretation of the M–T model: each inclusion behaves like an isolated
inclusion in the matrix seeing the average deformation in the matrix phase as a far-field strain. When
the matrix is isotropic, SI ;Ĝ0ðsÞ is computed with help of the classical analytical formulae (see Eshelby,
1961; Mura, 1987) called with the LCT of the matrix material�s Poisson�s ratio m̂0ðsÞ. There is no restriction
upon the imaginary part of the Poisson�s ratios.

The interpolative D–I model is based on the Nemat-Nasser and Hori (1999) double-inclusion model and
was proposed by Lielens (1999). Inverting material properties between the matrix and the inclusion phases,
we get the inverse M–T strain concentration tensor
B̂e
i;pðsÞ ¼ I þ SI;Ĝ iðsÞ : Ĝ

�1

i ðsÞ : Ĝ0ðsÞ � I
� �

¼: BIMTðsÞ. ð17Þ
Lielens (1999) proposed to interpolate between these two estimates to define a new concentration tensor as
B̂e
i;pðsÞ ¼ ð1� f ðvÞÞB�1

MTðsÞ þ f ðvÞB�1
IMTðsÞ

� ��1
; ð18Þ
with f(v) a function of the volume fraction of inclusions. For the D–I model, the concentration of inclusions
is explicitly part of the strain concentration tensor. Following the author the interpolation function is set to
f(v) = (v + v2)/2.

Both M–T and D–I models are used in our numerical simulations in Section 6.

3.2.2. Homogenization of the set of homogenized pseudo-grain

To perform the second step we will assume that each homogenized pseudo-grain undergoes the same
deformation. The macroscopic relaxation tensor that links average stress and strain over the RVE is then
given by
ĜðsÞ ¼ Ĝ i;pðsÞ
D E

i;Wi

. ð19Þ
Using this Voigt-like hypothesis leads in general to better results compared to those obtained by assuming
that the pseudo-grains are sharing the same stress or by using M–T (same deformation in the matrix phase
of all pseudo-grains) to perform the step. In linear elasticity (see e.g. Camacho et al., 1990; Pierard et al.,
2004) as well as for elasto-plastic composites (see e.g. Doghri and Tinel, 2005), very good predictions are
obtained in many situations. Indeed the Voigt-like assumption can be intuitively understood (see Christen-
sen, 1992; Lielens, 1999) by thinking of a two-phase composite with misaligned long fibers. The RVE for
this composite may consist of mingled fibers crossing the boundaries. For the average strain in each fiber to
be compatible with the average strain imposed on the RVE, the displacement of each fiber must follow the
displacement of the surface it crosses. The fibers are thus acting in parallel. To achieve that in the two-step
model, we must suppose the same deformation in all pseudo-grains. The Voigt-like assumption seems there-
fore to be more appealing than the others. The M–T assumption should even be rejected because it might
lead to physically unacceptable results (see Benveniste et al., 1991; Pierard et al., 2004). The case of a three-
phase composite involving two sets of aspect ratios constitutes a classical example.
4. Three general approaches for composites with coated inclusions

In Section 1, we discussed several methods for coated inclusion-reinforced materials. In this section, we
focus on general approaches and propose two new ones: two-level and two-step schemes. The composites
studied here are made up of three phases: matrix, inclusions and coaxial coatings. All inclusions have the
same aspect ratio and orientation. There are three linear elastic materials, one for each phase. It is also
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assumed that both reinforcing phases have the same shape (identical aspect ratios). This correponds to
most-frequently encountered situations (e.g., spherical particles or long fibers coated with constant thick-
ness layers).

All the restrictions above are introduced for clarity only as none of them is really a limitation. Firstly, as
underlined in the previous sections, the correspondence principle enables to transfer results from elasticity
to viscoelasticity. Secondly, dealing with much more general multi-phase composites with coated inclusions,
the virtual decomposition step of the two-step homogenization procedure (Fig. 1) leads to three-phase pseu-
do-grains of the type studied here. The following methods should then be used to achieve the first step
(homogenization of each pseudo-grain), the second step remaining unchanged.

4.1. A two-level recursive scheme

We propose a two-level procedure based on the idea that the matrix sees reinforcements that are them-
selves composites. We thus propose a two-level recursive application of homogenization schemes. As illus-
trated on Fig. 2, each coated inclusion is seen (deepest level) as a two-phase composite (a single inclusion
inside a matrix made of the interphase material) which, once homogenized, plays the role of a homogeneous
reinforcement for the matrix material (highest level). At each level a homogenization scheme suitable for
two-phase materials is needed. Using Eshelby-based methods supposes that the effective properties at the
deepest level are the same as those of a matrix body made of interphase material and reinforced with a large
number of small and randomly positioned inclusions having the same aspect ratio and volume fraction as
the real ones.

Several remarks must be made about this recursive scheme. Suppose that each material is isotropic. At
the highest level we have to deal with homogeneous transversely isotropic inclusions—the outcome of the
deepest level. One must then care about the calculation of Eshelby�s tensor when using Lielens interpolative
model (Lielens, 1999): the transversely isotropic material will also play the role of the matrix. Nevertheless,
Eshelby�s result is still valid and analytical formulae (see Withers, 1989) still exist provided the revolution
axis of the spheroid is aligned with the matrix� principal direction—which is the case here. At the deepest
Fig. 2. The two-level recursive homogenization procedure. The coated inclusions are seen as two-phase composites. Once
homogenized (deepest level) they play the role of reinforcements to complete the homogenization (highest level).
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level both materials are isotropic but the volume fraction of fillers is in general high. The interpolative D–I
scheme or even the inverse M–T model may thus be more adapted for this level than the M–T model.

4.2. Other procedures

Another generic way to handle coatings is through the multi-inclusion method by Nemat-Nasser and
Hori (1999) which is an extension of their double-inclusion model. For a three-phase composite with coat-
ings the behavior is approximated by that of an inclusion coated with a layer of interphase, itself sur-
rounded by a layer of matrix and embedded inside a reference material (Fig. 3(a)). Nemat-Nasser and
Hori (1999) showed that the overall stiffness tensor obtained with this multi-inclusion method is identical
to the one predicted by their multi-phase composite model. In other words, the coatings behave as if they
were a separate phase in matrix: inside the reference material stays an inclusion of matrix embedding sep-
arate inclusions of the other components (Fig. 3(b)). To make things simple, choosing as reference material
the one of the matrix will lead in both cases to the well known generalized M–T scheme where the coatings
are considered as a distinct reinforcing phase (Fig. 4(b)).
Fig. 3. Schematic view of the multi-inclusion method (a) and the multi-phase composite model (b) by Nemat-Nasser and Hori (1999).

interphase

matrix

fiber
material

material

material
a b

c

Fig. 4. (a) Transverse view of a coated fiber composite. (b) Direct extension of the Mori–Tanaka model: a three-phase composite
without interphase. (c) The two-step procedure: pseudo-grains of two types, (matrix + real inclusions) and (matrix + inclusions made
of interphase material).
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4.3. A two-step method

We propose a two-step scheme which treats coatings as separate reinforcements but instead of using a
generalized M–T for the three-phase coated composite, we virtually decompose the composite into an
aggregate of two pseudo-grains, each containing the matrix material either reinforced with real inclusions
or with inclusions made of coating material (Fig. 4(c)). Each two-phase pseudo grain is homogenized (first
step) and then the effective properties of the aggregate are computed (second step). We suggest using inter-
polative D–I or M–T in the first step and Voigt in the second.

Examples in Section 6 show that under severe conditions, our proposed two-level and two-step schemes
give remarkable predictions while a direct M–T method leads to erroneous results.

4.4. A comparative study

In order to exhibit the differences between those three procedures, the effective stiffness tensors are here-
after developed for generalized M–T, the two-step (M–T,Voigt) and the two-level (M–T, M–T) schemes.
The three phases are denoted X0 (matrix), X1 (real inclusions) and X2 (real coatings) while X stands for
the composite. Volume fractions of components inside the composite are denoted vi and elastic tensors
Ci for i = 0,1,2. We also introduce the following notation:
Be
C i;C j
¼ I þ SI ;C i : C�1

i : C j � I
� �� ��1

. ð20Þ
For a matrix material Ci reinforced with aligned inclusions of material Cj and shape I, this is the expression
of the strain concentration tensor relating strain averages between inclusion and matrix phases that corre-
sponds to the M–T scheme.

• The direct extension of the M–T scheme handles the coated inclusions as if they were not coated
(Fig. 4(b)). The overall stiffness tensor reads
C ¼ C0 þ v1 C1 � C0ð Þ : Ae
1 þ v2 C2 � C0ð Þ : Ae

2; ð21Þ
where Ae
1 and Ae

2 are the strain concentration tensors linking average strains in each reinforcing phase to the
average strains in the composite:
heiXi ¼ Ae
i : heiX; Ae

i ¼ Be
C0;C i

: v0I þ v1Be
C0;C1

þ v2Be
C0;C2

� ��1

; i ¼ 1; 2. ð22Þ
• The two-step (M–T, Voigt) model leads to the definition of two pseudo-grains (Fig. 4(c)) X01 (matrix +
real inclusions) and X02 (matrix + inclusions made of interphase material). The macroscopic stiffness
C ¼ C0 þ v1ðC1 � C0Þ : Ae
1;01 þ v2ðC2 � C0Þ : Ae

2;02 ð23Þ
has a similar expression (compare (23) to (21)) except that the concentration tensors do not relate the same
quantities as before. Each makes the link between average strains in the inclusion phase of a pseudo-grain
(X1

01 or X1
02) and the macro strains in that pseudo-grain:
heiX1
0i
¼ Ae

i;0i : heiX0i
; Ae

i;0i ¼ Be
C0;C i

: v0I þ ð1� v0ÞBe
C0;C i

� ��1

; i ¼ 1; 2. ð24Þ
• In the two-level (M–T,M–T) scheme, we first homogenize the coated inclusions with M–T. We thus
obtain an effective stiffness
C21 ¼ C2 þ
v1

v1 þ v2

C1 � C2ð Þ : Ae
1;21; ð25Þ
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where the concentration tensor Ae
1;21 considers the inclusions as the reinforcing phase X1

21 of the aggregate
X21 (inclusions + coatings) and relates the average strains as follows:
heiX1
21
¼ Ae

1;21 : heiX21
; Ae

1;21 ¼ ðv1 þ v2ÞBe
C2;C1

: v2I þ v1Be
C2;C1

� ��1

. ð26Þ
Next, we homogenize the matrix reinforced with those homogenized inclusions. As expected, this leads to
an expression which is nested with the (25):
C ¼ C0 þ ðv1 þ v2ÞðC21 � C0Þ : Ae
21. ð27Þ
Moreover, the strain concentration tensor Ae
21 depends also on the deepest level overall stiffness C21 and

reads for the M–T scheme:
heiX21
¼ Ae

21 : eh iX; Ae
21 ¼ Be

C0;C21
: v0I þ ðv1 þ v2ÞBe

C0;C21

� ��1

. ð28Þ
For the differences to be better underlined, the average strains in the coated phase (i.e., the real inclusions)
are written with respect to the macro strains heiX for each one of the three methods:
heiX1 ¼ Ae
1 : heiX; ð29Þ

heiX1 ¼ Ae
1;01 : heiX; ð30Þ

heiX1 ¼ Ae
1;21 : Ae

21 : heiX. ð31Þ
In the two-step scheme (Eq. (30)) the average deformation in the real inclusions does not depend on what
happens in the coatings, because of the Voigt assumption in the second step (under appplied strain). For the
direct extension of the M–T model (Eq. (29)) the deformations in the coated and the coating phases are
linked (Ae

1 also involves Be
C0;C2

). This is also true for the two-level approach (Eq. (31)). This latter scheme
exhibits a multiplicative decomposition of the strain concentration tensor. Note that a similar decomposi-
tion was found by Aboutajeddine and Neale (2005) in their new formulation of the double-inclusion model.
5. Time effective properties of multi-phase viscoelastic composites

Homogenization of viscoelastic multi-phase composites is not achieved in time domain. The LCT brings
the whole problem into the complex domain. Taking advantage of similarities with elastic composites,
homogenization schemes are extended in a straightforward manner, except that everything depends on
the complex variable s. The frequency behavior comes out by a simple change of variable s = ix. The over-
all time properties (e.g. how do the effective moduli evolve w.r.t. time?) cannot be obtained in such an easy
way. A numerical inversion of the LCT is required. The collocation method proposed by Schapery (1962) is
hereafter presented. It is easy to implement and the approximate function can be evaluated at any time once
some coefficients are determined. The method was advocated by Masson (1998) and also successfully tested
by Pierard and Doghri (2004) in the framework of the affine formulation for elasto-viscoplastic composites.

5.1. Principle of the collocation method

Let us consider an unknown time function f(t) which we are able to evaluate at any point of the trans-
formed domain, i.e. f̂ ðsÞ is known. The approximation ~f ðtÞ is developed into a n-terms Dirichlet series with
an additional affine term,
~f ðtÞ ¼ Aþ Bt þ
Xk¼n

k¼1

bk ð1� e�t=hk Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
basis functions

; ð32Þ
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and its transform is fitted with the transform of the series over a number m of distinct points, i.e.
f̂ ðslÞ ¼ Aþ B
sl
þ
Xk¼n

k¼1

bk

1þ slhk
; 1 6 l 6 m. ð33Þ
The above relations constitute a linear system with n + 2 unknowns: A, B and bk for 1 6 k 6 n. The number
of variables is reduced to n since
A ¼ lim
s!þ1

f̂ ðsÞ ¼ lim
t!0

f ðtÞ; ð34Þ

B ¼ lim
s!0

sf̂ ðsÞ ¼ lim
t!þ1

f ðtÞ
t
; ð35Þ
giving the sufficient condition m P n to ensure uniqueness of the solution of the system (33) in a least
square sense. Once the unknowns fixed, the function f can be estimated at any time t with help of (32). Fol-
lowing Schapery (1962) the total square error between the function and its approximation ð

R1
0
ðf ðtÞ�

~f ðtÞÞ2 dtÞ is minimized by collocating the LCT of the Dirichlet series and f̂ at n points s = 1/h (i.e.
m = n and sk = 1/hk; 1 6 k 6 n).

5.2. Application to viscoelastic composites

The unknown time function is in this case a tensor: the effective fourth-order relaxation tensor G . As
each component Gijkl is only a function of time, the generalization of the aforementioned procedure is
obvious.

The shape of the basis functions is similar to the terms of a Prony series (see (36)). The set of collocation
points hk should then at least contain all the relaxation times of all the materials involved in the composite.
This is however not enough and most authors advise to choose about twenty equispaced points on a log-
arithmic scale (see e.g. Pierard and Doghri, 2004).

The last issue is the limit tensors, A and B, which have to be known whatever the homogenization pro-
cedure. This is actually not a problem: A corresponds to the initial elastic response and B vanishes since
GðtÞ remains finite for each t.
6. Numerical simulations

All the theorical aspects exposed up to here, namely the two-step homogenization procedure (Section 3),
the two-level and two-step approaches for coatings (Section 4) and the collocation method (Section 5) are
hereafter applied to predict the frequency and time behavior of viscoelastic composites with two or three
phases, including coatings. Nineteen distinct composites are presented: fifteen two-phase materials and four
with three phases. Shear or (plane strain) tensile complex moduli are estimated with respect to frequency (5
cases), time (10 cases) or volume fraction of fillers (4 cases) using many different homogenization schemes.
The latter are analyzed as often as possible and compared with respect to each other. Each time, the pre-
dictions are validated against experimental data and/or FE results taken from the literature.

6.1. Frequency behavior of two-phase viscoelastic composites

The numerical materials involved here are made of two phases for which at least one is viscoelastic. In all
cases the inclusions are assumed aligned, reducing the two-step procedure to classical homogenization
methods. M–T and Lielens� interpolative schemes are used to predict the shear or tensile complex modulus,



Table 1
Components� weight and volume fractions of the Paraloid particle reinforced (PVC + DOP) matrix composite studied by Redaelli
(2002)

Materials Matrix Inclusions

PVC DOP Stabilizers Paraloid

Weight fraction [%] 61.5 24.5 1 13
Relative densitya (water = 1) [�] 0.9 0.9861 0.9
Volume fraction [%] 86.71 13.29

a Sources: http://www.inchem.org, http://www.chemicalland21.com.
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either with respect to frequency or, for a given one, in function of the volume fraction of fillers. The latter
are spherical particles or long fibers. FE unit cell results and experimental data are used for validation.

6.1.1. PVC matrix with spherical Paraloid inclusions
The composite was prepared by Redaelli (2002). It involves two incompatible polymers, Paraloid—com-

mercial name for polybutyl acrylate/methyl methacrylate—and polyvinyl chloride (PVC). The PVC had to
be plasticized by adding dioctyl phtalate (DOP) and small quantities of stabilizers entered also in the prep-
aration. The original composition was given in weight fractions of components. With help of the densities
we computed the volume fraction of each phase (the 1% stabilizers were shared half and half between PVC
and DOP). All these data are summarized in Table 1. Storage and loss shear moduli were determined exper-
imentally by Redaelli (2002) for the matrix, the inclusions and the blend over a frequency range from 0.5 to
50 Hz. With regard to the geometry of the reinforcements, scanning electron analysis (SEM) images also
coming from Redaelli (2002) show the Paraloid inclusions to be of spherical shape (i.e. Ar = 1).

The experimental measurements provided only the complex shear moduli. We calculated the bulk mod-
ulus of each phase with help of the Poisson�s ratios which we assumed constant. The matrix (PVC + DOP)
Poisson�s ratio was fixed to 0.49 according to Chazeau et al. (1999) who studied DOP plasticized PVC—in
proportions similar to the material of Redaelli (2002)—and reported a value of 0.5 at 280 K. The knowl-
edge of the Paraloid Poisson�s ratio is less important since it has no effect—at least for the M–T scheme—on
the effective shear modulus. The value of 0.4 was used.

We made numerical simulations with the M–T model. Our estimates of the complex shear modulus are
confronted to the experimental results on Figs. 5 and 6. The loss modulus is pretty well predicted (Fig. 6)
while the storage one is sligthly overestimated (Fig. 5). One reason might be that the material used for the
inclusion phase in our model is not pure Paraloid (no experimental data were reported in Redaelli (2002)
for pure Paraloid at 0 �C) but plasticized Paraloid (Paraloid + DOP).

6.1.2. Epoxy and copolymer matrix materials reinforced with ceramic particles

Marra et al. (1999) studied two composites. Both consist of a polymeric matrix reinforced with Ca-mod-
ified PbTiO3—a ceramic—spherical inclusions. The materials used for the matrix phase are Epon 828 and
P(VDF-TrFE). For each of them, the authors made experimental measurements of the tensile storage and
loss moduli. Next, they assumed constant (and thus real) Poisson�s ratios—values were taken from the lit-
erature (see Marra et al., 1999) and references therein)—to compute the real and imaginary parts of the
complex shear and bulk moduli. The reinforcing material is supposed elastic and its parameters were ob-
tained from previous works of other authors (see Marra et al., 1999). The (visco)elastic parameters of these
three components are reported in Table 2 for the angular frequency of interest x = 10 rad s�1. Marra et al.,
1999 collected experimental data on the complex tensile modulus for the heterogeneous materials. In addi-
tion, they made axisymmetric unit cell FE calculations and used a simple analytical model in order to pre-
dict the frequency behavior in tension. We made numerical simulations on these composites with the M–T

http://www.inchem.org
http://www.chemicalland21.com
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scheme and the interpolative D–I model (D–I). The predictions we obtained are confronted to Marra et al.
(1999) results on Figs. 7–10.

Looking at these four figures all together, one can observe that none of the numerical methods gives re-
sults very close to the experimental data. The misfit is much more pronounced for the tensile loss modulus
than for the storage one (compare Figs. 8 and 10 to Figs. 7 and 9, resp.). The worst predictions are obtained



Table 2
Mechanical properties of Ca-modified PbTiO3, Epon 828 and P(VDF-TrFE) for x = 10 rad s�1 (after Marra et al., 1999)

G 0 [GPa] G00 [GPa] K 0 [GPa] K00 [GPa]

Epon 828 1.2851 1.2524 · 10�2 4.1560 4.0501 · 10�2

P(VDF-TrFE) 5.6789 · 10�1 2.0221 · 10�2 2.4386 8.6832 · 10�2

E [GPa] m [�]

Epon 828 0.36
P(VDF-TrFE) 0.392
Ca-modified PbTiO3 127.6 0.2046
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for the Ca-modified PbTi03/Epon 828 composite (Fig. 8). One reason for this bad behavior is that all these
numerical simulations have been conducted with input data computed by assuming constant Poisson�s
ratios (see above). A real Poisson�s ratio implies indeed the same time dependency for the shear, bulk
and tensile moduli (e.g. identical relaxation times and normalized weights in the Prony series). The impact
of such a restriction might be not negligible and may not be suitable for these materials, especially for Epon
828.

Comparing the three analytical models together with the experimental data, the M–T scheme does in most
cases the worst job. That can be easily understood given the high volume fraction of fillers we must deal with.
The interpolative model tackles this issue and provides predictions as close as (Figs. 7 and 9) or even closer to
the experimental results (Figs. 8 and 10) than those obtained with the analytical model used by Marra et al.
(1999). The latter model is based on Hashin (1962, 1970) and Christensen (1969) works. Exploiting the cor-
respondence principle, it uses formulae for the bulk and shear elastic moduli of particle reinforced two-phase
composites. As no further details were given in Marra et al. (1999) on which formulae they exactly used, we
preferred reporting the corresponding curves as they were plotted. Nevertheless, we can say that apart from
the geometrical restriction this model has some limitations: the inclusions are elastic, the matrix is viscoelas-
tic in shear and elastic in hydrostatic loading, the square of the matrix shear loss factor is small (see Marra
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matrix. Comparison between experimental results, FE calculations and various homogenization scheme predictions.
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et al., 1999). The interpolative scheme (D–I) does not suffer from any of these shortcomings and we could
even hope better predictions if we knew the shear behavior of the two polymers. Moreover, the agreement
between the D–I predictions and the FE results is always very satisfying (see Figs. 7–10). However, the FE
analyses require for every volume fraction of reinforcements a different FE mesh, and this is very consuming
in user time. As far as CPU time in concerned, a D–I simulation for a particle concentration ranging from 0
to 1 lasts less than a second on an ordinary PC (CPU: 333 MHz, RAM: 160 M).



0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

te
ns

ile
 lo

ss
 m

od
ul

us
 (

E
″)

 [
M

Pa
]

ceramic volume fraction [-]

Ca-modified PbTiO3 spherical inclusions reinforcing a
P(VDF-TrFE) matrix under harmonic uniaxial tension (ω =10 rads-1)

D-I

M-T

Marra et al. 1999
experimental
analytical model
FE model

Fig. 10. Loss tensile modulus versus volume fraction of inclusions of a ceramic elastic particle reinforced P(VDF-TrFE) viscoelastic
matrix. Comparison between experimental results, FE calculations and various homogenization scheme predictions.

C. Friebel et al. / International Journal of Solids and Structures 43 (2006) 2513–2541 2529
6.1.3. Viscoelastic matrix with long viscoelastic fibers

The components involved in the composite explored by Brinson and Lin (1998) are two idealized isotro-
pic viscoelastic materials. Prony series are used to describe the time evolution of their shear and bulk
moduli:
Y ðtÞ ¼ Y 0 1�
Xn

i¼1

wi 1� e�t=si
� �" #

; Y 0 ¼ Y ðt ¼ 0Þ. ð36Þ
The relaxation times (si) and weights (wiY0) are listed on Table 3 for both materials� moduli. The sets of
values were chosen so that one of the materials is at all times stiffer (the stiff material) than the other
(the soft material) and that their loss peaks do not coincide. Notice also that in both cases shear and bulk
moduli do not have the same time dependence. The complex Poisson�s ratios have therefore a non-zero
imaginary part. Both materials will alternatively play the role of the matrix and the inclusions with a vol-
ume fraction of stiff material always equal to 36%.

This time the reinforcements are no longer of spherical shape but consist of long fibers (Ar!1), result-
ing in transversely isotropic heterogeneous materials. Brinson and Lin (1998) were interested in the complex
transverse plane strain tensile modulus of these two composites. To this end, they made FE calculations
with two sorts of unit cells. The models differed by the fiber arrangement in the matrix: square (FE-
SQR) and hexagonal (FE-HEX) array (see Brinson and Lin, 1998, for details). The authors also made sim-
ulations with the M–T scheme.

We compare our interpolative D–I and M–T predictions of the composites� storage and loss moduli to
those FE results on Figs. 11 and 12. In all cases, the FE and the homogenization models predict similar
frequency behaviors. However, the estimates obtained with the interpolative D–I match always the FE-
HEX ones. This is very satisfying because the hexagonal array fiber arrangement is more likely to reflect
the transverse isotropy of the material (Jansson, 1992). The M–T predictions—identical to those obtained
by Brinson and Lin (1998)—are less satisfying for a fiber volume fraction of 64%. As in the linear elastic
case (see Pierard et al., 2004) the analytical prediction is improved with the D–I model.



Table 3
Mechanical properties of the idealized viscoelastic materials used by Brinson and Lin (1998) and Fisher and Brinson (2001)

Stiff material Soft material

Shear Bulk Shear Bulk

si [s] G0wi [bar] si [s] K0wi [bar] si [s] G0wi [bar] si [s] K0wi [bar]

3 3.162 10,000 40,000 0.032 2.512 100.000 3000
10 17.783 0.100 10.000 316.228 100
32 100.000 0.316 56.234
100 316.228 1.000 316.228
316 1000.000 3.162 1000.000
1000 5623.413 10.000 199.526
3162 10,000.000 31.623 50.119
10,000 562.341 100.000 19.953
31,623 141.254 316.228 12.589
100,000 56.234 1000.000 2.512
316,228 17.783 3162.278 1.698
1,000,000 5.623 10,000.000 1.202
3,162,278 3.162 31,622.777 1.148
10,000,000 1.778 100,000.000 1.096

G0 = 17,948.761 K0 = 48,000 G0 = 1677.979 K0 = 3300

Relaxation times and weights involved in the Prony series.
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6.2. Frequency behavior of coated-inclusion reinforced materials

The following composites are made of elastic fibers or particles coated with a viscoelastic material and
embedded in a viscoelastic matrix. Various homogenization methods able to handle coatings are compared
together: the two-step procedure, our original two-level method, the direct extension of the M–T scheme—
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Fig. 11. Plane strain transverse storage tensile modulus as a function of frequency of two long fiber composites. Both phases bulk and
shear moduli are described with Prony series. The interpolative and Mori–Tanaka schemes are confronted to two FE unit cells
calculations.
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which is a particular case of the Multi-Inclusion method of Nemat-Nasser and Hori—and Benveniste�s
model. The predicted complex tensile moduli (with respect to frequency or volume fraction of inclusions)
are confronted to experimental data and/or FE calculations.

6.2.1. Viscoelastic matrix with long elastic fibers and viscoelastic coatings

Keeping both idealized viscoelastic materials of Table 3 and taking as third component an elastic one,
Fisher and Brinson (2001) considered the following three-phase composites: 30% elastic long fibers reinforc-
ing a soft (resp. stiff) viscoelastic matrix with 10% stiff (resp. soft) viscoelastic interphase. The fibers with
elastic shear and bulk moduli G = 40,000 Pa and K = 100,000 Pa are always the stiffest of the three phases.

Assuming a hexagonal array arrangement of the coated fibers, Fisher and Brinson (2001) calculated—
with a unit cell similar to the FE-HEX one used by Brinson and Lin (1998)—the complex transverse tensile
modulus E�2ðxÞ of both composites. To this end, two sets of boundary conditions had to be considered: one
set in order to compute the shear modulus G�12ðxÞ and another for the transverse plane strain tensile mod-
ulus E�12;2ðxÞ. The complex transverse tensile modulus is finally obtained as:
E�2ðxÞ ¼ 4G�12ðxÞ 1� G�12ðxÞ
E�12;2ðxÞ

 !
. ð37Þ
Fisher and Brinson (2001) also made numerical simulations with the generalized M–T scheme. The corre-
sponding results are labeled Mori–Tanaka (three phases) in Figs. 13–16. As briefly exposed in Section 4, the
same scheme could be applicable if the interface material were not coating the inclusions. Therefore we used
a two-step M–T/Voigt procedure labeled two-step (M–T, Voigt) in Figs. 13–16. Taking the FE predictions
as reference, the simulations show that in case of soft matrix and a stiff interphase the predictions of both
homogenization methods (direct M–T and two-step M–T/Voigt) match perfectly the FE-HEX ones (Figs.
13 and 14). On the contrary, it is clearly not true if the phases� materials are switched (Figs. 15 and 16):
neither the direct extension of M–T nor the two-step scheme (M–T, Voigt) shows a behavior comparable
to the one of the unit cell.
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Another method to evaluate the effective behavior of three phase composites with coated inclusions is the
one by Benveniste et al. (1989). The model assumes that ‘‘(. . .) the strain field in each part of the reinforce-
ment phases f or g (. . .) are assumed to be equal to the fields in a single inclusion of phase f or g which is
embedded in an unbounded matrix medium (. . .) and subjected to remotely applied strains (. . .) which are
equal to the yet unknown average strain in the matrix’’. Although this assumption is nothing else than
thinking the coatings as a separate phase combined to a M–T interpretation, this is not the generalized
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Fig. 15. Transverse storage tensile modulus as a function of frequency of a coated elastic long fiber composite. The bulk and shear
moduli of the coatings and matrix phases are expanded in Prony series. Comparison between various predictive methods.
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M–T scheme. The difference lies in the computation of the concentration tensors which link average strains
or stresses in the reinforcement phases to the corresponding averages in the matrix. Without going into de-
tails, the model by Benveniste et al. approximates these tensors ‘‘(. . .) by those found when the coated inclu-
sion is embedded in an unbounded matrix medium subjected to the average matrix stresses (or strains) at
infinity’’. By solving average stresses and strains on a set of auxiliary problems—each problem is defined by
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the (simple) loading applied at infinity—expressions for the concentration tensors are found. Compared to
the generalized M–T scheme—for which the tensors are computed with help of Eshelby�s result—this model
is strongly limited by the geometry. Actually, Benveniste et al. (1989) presented their model for aligned
coated long fibers only. With help of the elastic-viscoelastic correspondence principle, Fisher and Brinson
(2001) applied the method of Benveniste et al. (1989) to predict the complex transverse tensile modulus of
their two materials. Again, remarkable results are obtained for the stiff interphase composite (Figs. 13, 14)
while the overall behavior is missed completely in the case of soft coatings (Figs. 15 and 16).

We made numerical simulations with our two-level homogenization approach taking M–T or interpola-
tive D–I for the deepest level and M–T for the highest (Fig. 2). The corresponding labels are two-level (M–
T,M–T) and two-level (D–I,M–T), respectively. Our predictions are confronted to all other results on Figs.
13–16. The complex transverse tensile modulus is still very well predicted in the case of a stiff coating (Figs.
13 and 14) and, unlike the other homogenization schemes, this new recursive method gives results that show
good agreement with the FE-HEX ones when the interphase is made of the soft material (Figs. 15 and 16).
One also observes that using the interpolative model for the deepest level leads to slightly better estimates.

6.2.2. Epoxy and copolymer matrix materials reinforced with coated ceramic particles

Marra et al. (1999) modified their original FE model by adding a viscoelastic layer that surrounds each
inclusion. The idea they followed was that ‘‘energy losses likely occur at or near the interface of the ceramic
and the matrix’’. The inclusion and matrix materials are those of Table 2. The interphase�s properties are
those of the matrix except its Young�s loss modulus which is a times higher. The volume fraction of the
layer vi is linked to the one of the particles vp through the relation vi = vpf/(1 � f) for a given constant f.
The results they obtained with this model are labeled FE model with interphase in Figs. 17–20. The values
of the two additional unknowns, a and f, were determined by fitting the predictions on the experimental
points, which explains the remarkable agreement.

Taking the same values as Marra et al. (1999) for the new parameters, we used three-phase homogeni-
zation models to predict the complex tensile moduli of both composites. In each case (Figs. 17–20), our
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two-level scheme (D–I,M–T) underestimates the FE response and its predictions are always close to the
two-step (M–T, Voigt) ones. The high volume fraction of ceramic particles (coated or not) the M–T model
has to deal with explains these trends. The two-step (D–I,Voigt) works on the contrary pretty well for the
storage moduli of both composites (Figs. 17 and 19). The loss moduli however are not as well estimated,
especially for the reinforced epoxy matrix (Fig. 18). In comparison with the case of the copolymer matrix
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(f = 0.1,a = 2) the contrast between the loss moduli is much more pronounced (a = 33) and the layer is
much thinner (f = 0.02). This is a severe situation. The two-level model might overcome it if used with
the interpolative D–I scheme also at the highest level. This requires the extension to the complex plane
of Eshelby�s tensor formulae for an inclusion in a transversely isotropic matrix (see Withers, 1989). This
will be investigated in a future work.

6.3. Time behavior of two-phase viscoelastic composites

The materials hereafter should be qualified as academic since neither the composites nor the homoge-
neous components attempt to represent any existing material. They were actually picked up by Yi et al.
(1998) who chose them to illustrate their ‘‘(. . .) systematic way of obtaining the effective viscoelastic moduli
in time and frequency domain (. . .) for viscoelastic composites with periodic microstructure’’. The latter
methodology is in form not much different from what we do: compute the effective complex moduli in a
transformed domain (Laplace or Laplace–Carson) and invert them numerically into time domain. How-
ever, while both numerical inversion tools are almost indentical, the micro–macro transitions are drastically
different. Assuming a periodic microstructure Yi et al. (1998) use FE unit cell calculations (in the trans-
formed domain) in order to predict the effective moduli, while our estimates are computed by Eshelby-
based mean field homogenization schemes.

Various two-phase composites are examined here. Each of them consists of elastic or viscoelastic long
fibers embedded in a viscoelastic matrix (detailed material compositions are to be found on Figs. 21–23).
Transverse uniaxial loading under plane strain conditions is assumed.

Our numerical simulations have been conducted with the interpolative D–I model due to the high vol-
ume fraction of fibers. As explained in Section 5 the set of collocation points should at least include the
involved relaxation times, namely 1s and 10s. For these simple academic examples, they were chosen as
hk = k for 1 6 k 6 10.
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The predicted transverse plane strain elastic moduli are compared to those obtained by Yi et al. (1998)
on Figs. 21–23. These three figures represent no less than ten distinct composites—dissimilarities lie in the
concentration or in the material of the phases—and in each case both FE and D–I estimates are almost
identical. This is very satisfying although these two models do not refer to the same microstructure. A peri-
odic unit cell used in FE simulations can indeed be a good approximation of randomly distributed
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inclusions (assumed by mean-field homogenization) for linear elastic composites, but not always for non-
linear composites (see Adams, 1970; Jansson, 1992; Weissenbek et al., 1994; Böhm and Han, 2001; Segu-
rado et al., 2002; Ji and Wang, 2003; Saraev and Schmauder, 2003; Carrere et al., 2004; Iwamoto, 2004).
Due to the elastic-viscoelastic correspondence principle, the good agreement between FE simulations and
D–I estimates can be considered in our case as a validation. However, in order to be have a complete val-
idation, comparisons should be made with FE calculations conducted on RVEs (not unit cells) containing a
random distribution of the fibers. These more realistic FE simulations are very expensive in regard to the
CPU and user times which both are already high in the case of periodic microstructures. Remember that in
the FE analyses for each fiber volume fraction (here five in total) a new FE mesh has to be built. On the
contrary, only a change in the value of a single parameter is needed for the interpolative scheme. Moreover,
homogenization models provide a three dimensional response: the output is a tensor from which the moduli
are extracted. With the FE based method, new analyses, numerical inversions and sometimes new meshes
would be necessary if we were interested in other moduli.
7. Conclusions

In this paper, we presented general schemes for the mean-field homogenization in the linear visco-elastic
regime of matrix materials reinforced with multiple phases of ellipsoidal inclusions, either coated or not.

A general two-step homogenization procedure suitable for multi-phase composites was extended from
linear elasticity to linear viscoelasticity. For composites with coated inclusions, we proposed two general
methods: two-step and two-level schemes. We compared them mathematically to a commonly used direct
M–T method. For a two-phase composite, either standalone or arising from two-step or two-level homog-
enization schemes, we recommend using a viscoelastic version of Lielens (1999) interpolative scheme based
on Nemat-Nasser and Hori (1999) D–I models. The scheme is an analytical but non-trivial interpolation
between M–T and inverse M–T estimates.
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We put a special emphasis on an extensive validation of the proposed methods against available exper-
imental data and unit cell FE results. We tried severe cases (high volume fractions of inclusions, high con-
trasts between materials properties, soft or stiff matrices).

For two-phase composites, several simulations were presented in the frequency domain (Figs. 5–12). As
compared to reference unit cell FE results, the predictions of the interpolative D–I model were always excel-
lent and better than those of M–T for high volume fractions of inclusions (see Figs. 7–12).

The same remarkable predictions of interpolative D–I were also observed in the time domain (Figs. 21–
23).

For composites with coated inclusions, the numerical simulations (see Figs. 13–20) show that in each
case our proposed two-level or two-step schemes, or both of them give excellent predictions, except in
one instance (Fig. 18). For stiff fibers coated with a soft viscoelastic layer and embedded in a stiff viscoelas-
tic matrix, our proposed schemes performed remarkably well while two other methods, namely a direct M–
T and Benveniste et al. (1989) procedure gave very wrong estimates (Figs. 15 and 16).

There are at least a few directions for future work. One issue is to better assess the predictive capabilities
and limitations of the proposed two-step and two-level schemes for coated composites. For instance, in
Figs. 15 and 16, the predictions of the two-level scheme are truly remarkable and much better than those
of the two-step scheme, a direct M–T method or the model of Benveniste et al. (1989). However, in Figs. 17,
19 and 20, the two-step interpolative D–I/Voigt procedure performed much better than the two-level
scheme. Finally, for the same coated composite, while the prediction of the storage modulus by the two-
step interpolative D–I/Voigt is excellent (Fig. 17), that of the loss modulus is very poor (Fig. 18).

Another subject for future work is to extend the proposed methods to nonlinear viscoelasticity, perhaps
by using the so-called affine formulation, which was developed successfully for elasto-viscoplasticity (e.g.
Masson, 1998; Pierard and Doghri, 2004).
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